

JMaCS: a Java
Monitoring and Control System

 Rob Dickens

 // Latterfrosken
 software.development(limited);

Presented as poster at SPIE conference on Astronomical Instrumentation, in Marseille, France, on
June 27, 2008

Copyright 2008 Latterfrosken Software Development Limited

Introduction
JMaCS is derived from experimental software[1][2] originally written to permit the monitoring and control of

a radar used for observing the Earth's ionosphere[3].

Of particular interest when considering that software's requirements were the radar's (then novel)

distributed design[4], together with its remote and sometimes inaccessible location. The scope of those

requirements were subsequently to grow from being user interface-related only, to system-wide.

Although JMaCS is no longer radar-specific, its design goals are otherwise essentially the same: to

facilitate the local or remote interactive and programmatic monitoring and control of a distributed

target. This should be achieved in soft[5] realtime, which is to say that commands and status

should be delivered in a timely manner, but with the built-in assumption that delays will sometimes

occur. Where necessary, therefore, external underlying hard-realtime subsystems will be assumed.

The Java[6] platform was chosen for its many features aimed at facilitating the development of distributed

software. Of particular interest initially were those features which simplified the development of cross-

platform GUI apps. Later, it was to be the ability to send and receive executable objects, using efficient

native Java serialisation, and employ polymorphism in a distributed setting.

Client-server design
user interface (UI) clients → target server ← device interface (DI) clients

This was considered to be a suitable reflection of the distributed and possibly remote nature of the target,

and also to have two advantages over a design involving DI servers:

– access to devices is more secure, since they may only be accessed via the target server chosen by

the DI deployer;

– it is more easily extended, by the simple introduction of additional DI clients.

It was decided that the convenience of high-level interactions, using Java Remote Method Invocation

(RMI)[7][8][9], could be afforded for delivering commands, and that the efficiency of low-level ones, using

sockets, was required for the dissemination of status. Furthermore, in order to permit efficient

dissemination on a local network, it was decided that the size of all device status samples should be

constrained by the payload of a UDP datagram (that could then be multicast to all recipients in one go).

Each DI client requires a 'plug-in', consisting of classes implementing particular Java interfaces: a driver

(for executing commands and generating status) together with optional monitor and controls GUIs.

Each DI client also requires a domain.like.name, thereby defining its position in a logical hierarchy

representing the target as a whole.

'Programmable Devices'
Rather than have to write a new DI plug-in every time, it is useful to write 'adapter'[10] ones, which fill-in

some of the 'blanks', and often introduce new ones of their own. This technique may be used to write an

adapter which accepts a definition of an actual named device (e.g. steerable antenna), having its own

API.

Furthermore, this adapter can be

endowed with the means to receive and

run programs, exposing the device's API

to those programs.

The definition accepted by such an

adapter is therefore referred to as a

'programmable device' (PD).

New PDs may be written in terms of

existing ones using the object-oriented

techniques of composition and

inheritance[11], and catalogues then

accumulated.

Thanks to the org.jmacs Java package, DI plug-ins are developed independently of the actual JMaCS

implementation, which is supplied by a third party. Thus, plug-ins implement org.jmacs.IDi.IDriver,

while the JMaCS implementation implements org.jmacs.IDi.AbstractFactory. DI deployment

JMaCS implementation packages

org.jmacs

DI plug-ins
org.jmacs.pd

Fully-implemented PDs

Implementation

which extends org.jmacs.pd.Device.IDriver. An implementation of this (which might or might not

be part of the definition) is then instantiated and made available locally to any command-

org.jmacs.pd.IInterpreter provided, and to any

org.jmacs.pd.IPrograms run, and also remotely via a dynamic

proxy.

The wake() method implemented by PD programs (right) is called

periodically, as controlled by the timer.

involves first instantiating the latter via its static getInstance()

method, where the implementation class must be in the Java

class-path, and is specified using a Java system-property.

The org.jmacs.pd package provides the DI plug-in adapter

described earlier. All PD definitions must include a Java interface

sending samples over the internet. Their dissemination from local and remote DIs is depicted above.

A severe bottleneck was subsequently encountered when sending status samples to these remote

subscribers. This was addressed by utilising a separate thread (in the target server) for each DI being

subscribed to, together with a separate connection for each remote subscription, thus allowing different

samples to be sent concurrently.

Changes were also required in order to accommodate port-number indirection security-measures.

Initially, device status samples were

disseminated using connectionless

transport[12] exclusively. However, it

was later discovered that there was

effectively a limit of only a few kilobytes

to the size of UDP datagrams which

could be sent over the internet. This

necessitated making significant

changes to the JMaCS

implementation, to enable connection-

oriented transport[12] to be used for

Negotiating the Internet

User interface
The AWT-based GUI of the original experimental software has evolved into a Swing-based one, utilising a

set of JUICe (http://lafros.com/juice) libraries which have been developed in parallel with JMaCS. Among

these libraries is the JUICe.app application framework, which allows the UI client to be run either as a

stand-alone application (using Java Web Start) or as an applet (embedded in the browser window). The

following features are implemented:

– compensation for any clock lag or drift (relative to

the server host's clock);

– synchronized refreshing of monitor windows (after

a set delay), where the titles of any which could

not be refreshed are highlighted;

– intrusive alerts (issued by the UI Client itself, together with any written using the JUICe.alerts library);

– 'hot deployment' of downloaded classes where appropriate;

– interactive configuration of PD program properties.

Connecting to the target (above right) creates a viewer pane, containing a DI navigator and scrollable area

in which to display the monitor windows and control panels (optionally) supplied by each DI, together with a

command line (whose commands will be sent to the selected DI).

http://lafros.com/juice

The demonstration target
This is an easily understood 'installation' that demonstrates, amongst other things, how one DI may control

others, in this case simply the root controlling its two children. Thus, we have a PD representing an eyes

'device', together with two steerable antenna ones named 'eyes.left' and 'eyes.right'.

The user first submits a command to the root, via its control

panel (or the UI's built-in command line). The root then

sends corresponding commands to its children. Two 'eyes'

commands are available—one to 'look' at a particular point

in space (right), and another to track a projectile from a

specified launch site to a specified target one.

N.B. None of these DIs interfaces to any hardware device.

The steerable antenna ones are instances of a simulator

implementation of an abstract PD defined for use with the

original radar.

N.B. The target is not strictly distributed, since all the DIs

are currently running on the server host.

Demonstrating programmable control
Programs may be instantiated and

configured either programmatically

(left) or interactively (below).

Load testing
The demonstration target has an additional ten DIs named 'eyes.test.load 0-9'. These simply allow the

size of their status samples to be adjusted. Various numbers of users, both local and remote, were logged

in, various numbers of load-testing DI monitor windows were opened, and various sample sizes and

sampling periods were configured.

The amount of data being sent to remote subscribers is still found to be the bottleneck, though less severe,

and now thought to be limited by the external factor of Internet upload bandwidth: only about 32KiB/s,

corresponding to e.g. four remote users, each having four monitor windows open, where each monitor is

sent a 2KiB device status sample (on each sampling boundary).

This configuration was easily

achieved using sampling

periods down to 2s, even with

all four remote UI clients

running on the same host.

Conclusions
● The JMaCS monitoring and control software has been presented.

● Testing using the demonstration target has shown that it works well within the confines of the test.

● More extensive testing is therefore called for, where,

– the server host has greater Internet upload bandwidth;

– DIs are run on one or more separate hosts, preferably including remote ones.

● It is therefore tentatively claimed that,

– monitoring and control using JMaCS is now viable;

– the benefits of employing Java's remote polymorphism have been demonstrated.

● The experience of developing this software suggests that,

– only very clearly defined Java projects should be attempted on a casual basis—the many facilities

Java puts within reach still require a depth of understanding in order to be used effectively;

– incorporating native code (when interfacing to hardware) can be challenging. However, this

requirement is anticipated to have been reduced by newer versions of the Java platform, as well as by

the advent of a realtime edition.

References
[1] Rob Dickens, Secure remote monitoring-and-control for the EISCAT Svalbard Radar: a case study in Java
object-oriented design, 9th International EISCAT Workshop talk (Aug 1999).

[2] Rob Dickens, Monitoring and control of the 'radar.eiscat.esr' device, 10th International EISCAT Workshop
poster (Jul 2001).

[3] Röttger, J., U.G. Wannberg and A.P. van Eyken, The EISCAT Scientific Association and the EISCAT Svalbard
Radar Project, J. Geomag. Geoelectr., 47, 669-679 (1995).

[4] Bjørnå, N., B. Hultqvist, W. Kofman, J. Roettger, K. Schlegel, T. Turunen and D.M. Willis, The EISCAT Polar
Cap Radar: Report on the design specification for an incoherent scatter radar facility based on the archipelago of
Svalbard, prepared by the Polar Cap Radar Working Group established by the EISCAT Council, with financial
support from the Rutherford Appleton Lab, UK (Nov 1990).

[5] Peter C. Dibble, Real-Time Java Platform Programming, Sun Microsystems Press, pages 7-9 (2002).

[6] James Gosling and Henry McGilton, The Java Language Environment, http://java.sun.com/docs/white/langenv
(May, 1996).

[7] Daniel J. Berg and J. Steven Fritzinger, Advanced Techniques for Java Developers, Wiley, Chapter 7 Mastering
Java Remote Method Invocation Techniques (1997).

[8] Rickard Öberg, Mastering RMI, Wiley (2001).

[9] Esmond Pitt and Kathleen McNiff, java.rmi, Addison Wesley (2001).

[10] For example, Steven John Metsker and William C. Wake, Design Patterns in Java, Addison Wesley, Chapter
3 (2006).

[11] For example, Peter Coad and Mark Mayfield, Java Design, Yourdon Press (1997).

[12] Douglas E. Comer and David L. Stevens, Internetworking with TCP/IP Volume III - Client-Server
Programming and Applications, Prentice Hall, §2.3.5 (1994).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

